thyssenkrupp's role in the global green energy transition

Dr. Stefan Kaufmann Hydrogen Executive Advisor to the Board of thyssenkrupp AG

4th World Future Fuel Summit & Expo New Delhi, 15 February 2023

engineering.tomorrow.together.

Huge Potential for future fuels in numerous global PtX projects

Essential: Fast gobal increase of renewable energy sources

Share of global capacity additions by technology

Source: BloombergNEF. Note: Share of global capacity additions excluding retirements.

Expected development of trade in energy commodities

Figure S.1 Shifts in the value of trade in energy commodities, 2020 to 2050

Increasing number of bi- and trilateral partnerships for pushing the green transition

thyssenkrupp: for more than 200 years

a synonym for German industrialization and

innovative strength

system

We at thyssenkrupp want to be part of the solution for the entire system. Because we as a group of companies have something to offer along the H2-triangle of demand-, supply- and infrastructure-side.

С

Decarbonizing thyssenkrupp's steel production

- The decarbonisation of the steel industry is a very big lever to quickly achieve significant progress towards climate neutrality.
- thyssenkrupp steel has a clear concept for decarbonizing production that is both technologically mature and scientifically recognized.
- We want to reduce emissions in steel by 30 percent by 2030. Climate neutrality is envisaged by 2045 at the latest.
- The electricity consumption required for hydrogen production corresponds to the current consumption of 25 percent of German households – approximately 36 TWh

Examination of a stand-alone solution of the steel n 112 per business

- thyssenkrupp nucera is one of the few suppliers in the world able to offer technology for the production of hydrogen on a gigascale level.
- With over 600 projects, 240.000 electrolytic cell elements produced and over 10 GW of electrolyzer capacity installed, thyssenkrupp nucera is a market leader in the chlor-alkali sector.
- Here we want to further expand our leading position in electrolysis - with cutting-edge technology and further major international projects.

Hydrogen already has a market demand of more than 3.500 TWh

Hydrogen market demand 2020A¹

 1. Source: IEA (2021), Hydrogen, IEA, Paris https://www.iea.org/reports/hydrogen
 2. Includes DRI and other industrial uses
 3. Source: Bloomberg News, Hydrogen Generation Market Worth \$201

 Billion by 2025, February 16, 2021
 4. Refers to 2019 Other Energy Industries and Industry uses
 3. Source: Bloomberg News, Hydrogen Generation Market Worth \$201

The worldwide hydrogen market is expected to grow sevenfold by 2050

1. Converted from Mt with an energy content of 1kg of hydrogen equal to 141.9 MJ (HHV) = 39.4 KWh 2. Source: Hydrogen Council in collaboration with McKinsey & Company, Hydrogen for Net Zero Report, November 2021

business provides a strong technology basis for AWE scale-

Chlor-Alkali Electrolysis

A global leader with proven experience with over 600 projects & 240,000 cell elements >10 GW of electrolyzer capacity installed

Market Readiness

- Product

Organization & Network

Industrial-scale installations
Quality proven supply chain of 1 GW cell manufacturing capacity p.a.

A technology leader for electrolysis

• Handling of hydrogen as a by-product

Holistic life cycle services

Global network with partners

Alkaline Water Electrolysis

Building on chlor-alkali experience to be #1 in AWE

- Industrial-scale hydrogen plants
- Expand to a 5 GW supply chain
- Standardized AWE product with leading TCO¹
- Hydrogen as the main product
- Successful service model
- Automation and digitalization

thyssenkrupp nucera offers an efficient and highly scalable module concept to match highest market demands

thyssenkrupp nucera has the largest contract backlog¹

thyssenkrupp nucera has an AWE order backlog of approx. 0.9 bn €□ and a CA and Service order backlog of approx. 0.4 bn €□

As of 31.12.2021

Expansion of wind energy

- With our innovative slewing bearings we are making the boom in wind energy possible in the first place.
- Wherever new wind farms are built, there is a high probability that thyssenkrupp technology is involved.

Hydrogen transport

- Our plant engineers at thyssenkrupp Uhde are experts in the construction of ammonia and methanol plants.
- Ammonia is most likely the future transport media for importing green hydrogen from other regions of the world to Europe.

Green Ammonia as Hydrogen Carrier – Status Quo

NH₃

~180 million tons per year, ~80% is processed into fertilizer

Nitrogen + Hydrogen

Other applications: e.g. cooling, chemical processes

Ammonia: an ideal hydrogen carrier

 H_2

Hydrogen only liquefies at extremely low temperatures:

is consumes up to 40% of the energy bound in the hydrogen

Ammonia liquefies at about twice the temperature of a freezer:

-33°C

...and has a higher energy density than hydrogen (by volume):

33% more energy

Ammonia transportation remains strongly dependent on global transportation via

Key Statements

~10 % of the globally generated Ammonia is being **exported**

Main Volume of Ammonia will be furtherly converted (~75 %) => not available for alternative use

LATAM and Europe are largest importers (38 % / 24 %)

1. Fertecon

chin

2. CIS (inkl. Russia, Belarus, Armenia, Azerbaijan, Kazakhstan, Kyrgyzstan, Moldova, Tajikistan and Uzbekistan)

These different competencies in forward-looking technologies and different perspectives on green value chains make thyssenkrupp a unique partner for the green transformation.

partnerships

Individual actions will not be enough – because building the necessary global infrastructure for the green transformation is a challenge for society as a whole

We need efficient global cooperation between politics and business to optimize and accelerate the necessary development of the entire infrastructure.

Our 200-year history proves that we think long-term and are interested in stable partnerships, which are of elementary importance for the success of the green transformation.

We strive for global partnerships and win-win opportunities for the green transformation

engineering. tomorrow. together.

